计算题 设A,P为4阶方阵,且P可逆.
问答题 9.证明|E-A|=|E-P-1AP|;
【正确答案】由P-1(E-A)P=P-1EP-P-1AP=E-P-1AP,
两边取行列式,有
|P-1(E-A)P|=|P-1||E-A||P|=|E-A|=|E-P-1AP|,
证得|E-A|=|E-P-1AP|.
【答案解析】
问答题 10.若P-1AP=kE,计算|E-A2|.
【正确答案】若P-1AP=kE,则(P-1AP)2=P-1A2P=k2E,于是,由(1),得
|E-A2|=|E-P-1A2P|=|E-k2E|=|(1-k2)E|=(1-k2)4
【答案解析】