选择题 1.设非齐次线性方程组Ax=β的通解为x=k1(1,0,0,1)T+k2(2,1,0,1)T+(1,0,1,2)T,其中k1,k2为任意常数.A=(α1,α2,α3,α4),则( )
【正确答案】 C
【答案解析】本题考查非齐次线性方程组通解的结构和常数项向量与系数矩阵的列向量的关系.
由题意知ξ1=(1,0,0,1)T,ξ2=(2,1,0,1)T为齐次线性方程组Ax=0的解,即Aξ1=0,Aξ2=0,可得α14=0,2α124=0,则α1=-α4,α24,又η=(1,0,1,2)T为Ax=β的解,即有
β=α13+2α434
故知β可由α3,α4线性表示,故应选C.