x
2
+o(x
2
)]=x-
x
3
+o(x
3
),sinx=x-
x
3
+o(x
3
), 因此,xcosxsinx=
x
3
+o(x
3
)=
x
3
+o(x
3
). 再求分子的泰勒公式.由 x
2
e
2x
=x
2
[1+(2x)+o(x)]=x
2
+2x
3
+o(x
3
),ln(1-x
2
)=-x
2
+o(x
3
),
x
2
e
2x
+ln(1-x
2
)=2x
3
+o(x
3
). 因此
(Ⅱ)由ln(1+x)=x-
x
2
+o(x
2
)(x→0),令x=
,即得
