单选题
21.
设f(x)二阶可导,且f’(x)>0,f”(x)>0,△x为自变量x在点x
0
处的增量,△y与dy分别为f(x)在点x
0
处对应的增量与微分,若△x>0,则( )
A、
0<dy<△y.
B、
0<△y<dy.
C、
△y<dy<0.
D、
dy<△y<0.
【正确答案】
A
【答案解析】
由于f’(x)>0,故f’(x
0
)<0,而dy=f’(x
0
)△x,又△x>0,从而dy>0.
又f”(x)>0,从而f’(x)单调递增,而
△y=f(x
0
+△x)-f(x
0
)=f’(ξ)△x,x
0
<ξ<x
0
+△x,于是△y=f’(ξ)△x>f’(x
0
)△x=dy,所以应选(A).
提交答案
关闭