=2x
0
.设所求切线方程为y-y
0
=2x
0
(x-x
0
),即 y-(1+x
0
2
)=2x
0
(x-x
0
).(*) 将点(0,0)代入(*)式,得 -(1+x
0
2
)=-2x
0
2
,x
0
2
=1, 解得 x
0
=±1. 因此 y'|
x=-1
=-2,y'|
x=1
=2. 相应的切线方程为y-2=-2(x+1),即y=-2x, y-2=2(x-1),即y=2x. 故两条切线与曲线y=1+x
2
所围图形如图1—3—6所示,
故S=∫
-1
0
[1+x
2
-(-2x)]dx+∫
0
1
(1+x
2
-2x)dx=2/3.
