解答题
21.
设f(x)在[0,1]上二阶可导,且f(0)=f'(0)=f(1)=f'(1)=0.
证明:方程f"(x)-f(x)=0在(0,1)内有根。
【正确答案】
令Φ(x)=e
-x
[f(x)+f'(x)],因为Φ(0)=Φ(1)=0,所以由罗尔定理,存在c∈(0,1),使得Φ'(c)=0,而Φ'(x)=e
-x
[f"(x)-f(x)]且e
-x
≠0,所以方程f"(c)-f(c)=0在(0,1)内有根。
【答案解析】
提交答案
关闭