【正确答案】
【答案解析】x
2
-y
2
[解析] 利用一阶全微分形式不变性可得复合函数g(x,y)的一阶全微分
dg=f"
u
d(x
2
+y
2
)+f"
v
d(x,y)
=2(xdx+ydy)f"
u
+(ydx+xdy)f"
v
=(2xf"
u
+yf"
v
)dx+(2yf"
u
+xf"
u
)dy.
从而g"
x
=2xf"
u
+yf"
v
,g"
y
=2yf"
u
+xf"
v
.继续求g(x,y)的二阶偏导数,又有
g"
xx
=2f"
u
+2x(f"
u
)"
x
+y(f"
v
)"
x
=2f"
u
+2x(2xf"
uu
+yf"
uv
)+y(2xf"
vu
+yf"
vv
)
=2f"
u
+4x
2
f"
uu
+4xyf"
uv
+y
2
f"
vv
,
g"
yy
=2f"
u
+2y(f"
u
)"
y
+x(f"
v
)"
y
=2f"
u
+2y(2yf"
uu
+xf"
uv
)+x(2yf"
vu
+xf"
vv
)
=2f"
u
+4y
2
f"
uu
+4xyf"
uv
+x
2
f"
vu
.
故g"
xx
-g"
yy
=4(x
2
-y
2
)f"
uu
-(x
2
-y
2
)f"
vv
.
=(x
2
-y
2
)(4f"
uu
-f"
vv
)=x
2
-y
2
.