选择题 1.设X和Y为相互独立的连续型随机变量,它们的密度函数分别为f1(x),f2(x),它们的分布函数分别为F1(x),F2(x),则( ).
【正确答案】 D
【答案解析】可积函数f(x)为随机变量的密度函数,则f(x)≥0且∫-∞+∞f(x)dx=1,显然A不对,取两个服从均匀分布的连续型随机变量的密度函数验证,B显然不对,又函数F(x)为分布函数必须满足:(1)0≤F(x)≤1;(2)F(x)单调不减;(3)F(x)右连续;(4)F(-∞)=0,F(+∞)=1,显然选择D.