单选题 8.已知三阶矩阵A与三维非零列向量α,若向量组α,Aα,A2α线性无关,而A3α=3Aα-2A2α,那么矩阵A属于特征值λ=-3的特征向量是( )
【正确答案】 C
【答案解析】由已知A3α+2A2α-3Aα=0,即有
(A+3E)(A2α-Aα)=0=O(A2α-Aα)。
因为α,Aα,A2α线性无关,那么必有A2α-Aa≠0,所以,A2α-Aα是矩阵A+3E属于特征值λ=0的特征向量,亦即矩阵A属于特征值λ=-3的特征向量。所以应选(C)。