解答题 2.设随机变量x与y相互独立,X的概率分布P{X=i}=(i=-1,0,1),Y的概率密度为fY(y)=,记Z=X+Y.
(Ⅰ)求P{Z≤
【正确答案】(Ⅰ)P{Z≤|X=0}=P{X+Y≤|X=0}=P{0+Y≤|X=0}

(Ⅱ)Y的分布函数为:FY(y)=
Z的分布函数为
FZ(z)=P{Z≤z}=P{X+y≤z}=P{X+Y≤z|X=i}P{X=i}
=P{-1+Y≤z|X=-1}.+P{0+Y≤z|X=0}.+P{1+Y≤z|X=1}.
[P{Y≤z+1}+P{Y≤z}+P{Y≤z-1}]=[FY(z+1)+FY(z)+FY(z-1)]

故fZ(z)=F′Z(z)=
【答案解析】