解答题 18.设α1,α2,…,αn为n个n维线性无关的向量,A是n阶矩阵.证明:Aα1,Aα2,…,Aαn线性无关的充分必要条件是A可逆.
【正确答案】令B=(α1,α2,…,αn),因为α1,α2,…,an为n个n维线性无关的向量,所以r(B)=n.(Aα1,Aα2,…,Aαn)=AB,因为r(AB)=r(A),所以Aα1,Aα2,…,Aαn线性无关的充分必要条件是r(A)=n,即A可逆.
【答案解析】