解答题 22.设齐次线性方程组Ax=0的基础解系为α1=(1,3,0,2)T,α2=(1,2,-1,3)T.Bx=0的基础解系为β1=(1,1,2,1)T,β2=(0,-3,1,a)T.若Ax=0和Bx=0有非零公共解,求a的值并求公共解.
【正确答案】设非零公共解为γ,则γ既可由α1和α2线性表示,也可由β1和β2线性表示.
设γ=x1α1+x2α2=-x3β1-x4β2,则x1α1+x2α2+x3β1+x4β2=0.

y≠0→x1,x23,x4不全为零→R(α1,α2,β1,β2)<4→a=0.
当a=0时,

解得
【答案解析】【思路探索】设出公共解,进而转化为线性方程组的解.