若两个方程x2+ax+b=0和x2+bx+a=0只有一个公共根,则______.
 
【正确答案】 D
【答案解析】 方程x2+ax+b=0和x2+bx+a=0只有一个公共根,[*]
   (1)-(2)得:(a-b)x+(b-a)=0,即(a-b)(x-1)=0,
   因为a≠b(因为两个方程只有一个公共根),
   所以x=1.把x=1代入(1)得:1+a+b=0.所以a+b=-1.