问答题
不可压缩二维流动的流速分量为:u
x
=x-4y,u
y
=-y-4x。要求:
(1)该流动是恒定流还是非恒定流。
(2)该流动是否连续。
(3)写出流线方程式。
(4)判别有无线变形和角变形运动。
(5)判别有涡流还是无涡流。
(6)判别是否为势流,若流动有势写出流速势函数表达式。
【正确答案】正确答案:(1)因为u
x
与u
y
均与时间无关,所以流动是恒定流。 (2)流动能用表达式表达出来,显然也是连续的。 (3)设流函数为ψ,则有:

=u
x
=x一4y 积分可得: ψ=xy一2y
2
+f
(x)
又

=一u
y
=y+4x,于是有: ψ=xy一2y
2
+2x
2
流线即流函数值为常值的线,故流线方程为:

【答案解析】