【正确答案】[证明] (Ⅰ) 当f(x
0)≠0时,由f(x)的连续性知:存在δ>0,使得当|x-x
0|<δ时f(x)与f(x
0)同号.若f(x
0)>0,则当|x-x
0|<δ时有
F(x)=g(x)|f(x)|=g(x)f(x),
从而F(x)在x=x
0处可导,且F'(x
0)=g(x
0)f'(x
0)+g'(x
o)f(x
0).类似可证当f(x
0)<0时F(x)也在x=x
0处可导.
(Ⅱ) 当f(x
0)=0时,F(x
0)=g(x
0)|f(x
0)|=0,从而F(x)在点x=x
0处的左导数与右导数分别是

故当f(x
0)=0时,|F(x)|在点x=x
0处可导的充分必要条件为
