设f(x)在(x 0 -δ,x 0 +δ)有n阶连续导数,且f (k) ( 0 )=0,k=2,3,…,n-1;f (n) (x 0 )≠0.当0<|h|<δ时,f(x 0 +h)=f(x 0 )=hf'(x 0 +θh),(0<θ<1).求证:
【正确答案】正确答案:这里m=1,求的是f(x 0 +h)-f(x 0 )=hf'(x 0 +θh)(0<θ<1)当h→0时中值θ的极限.为解出θ,按题中条件,将f'(x 0 +θh)在x=x 0 展开成带皮亚诺余项的n-1阶泰勒公式得 f'(x 0 +θh)=f'(x 0 )+f''(x 0 )θh+ f (3) (x 0 )(θh) 2 +…+ f (n) (x 0 )(θh) n-1 +o(h n-1 ) =f'(x 0 )+ f (n) (x 0 )(θh) n-1 +o(h n-1 )(h→0), 代入原式得 (x 0 +h)-f(x 0 )=hf'(x 0 )+ f (n) (x 0n-1 h n +o(h n ) ① 再将f(x 0 +h)在x=x 0 展开成带皮亚诺余项的n阶泰勒公式 f(x 0 +h)-f(x 0 )=f'(x 0 )h+…+ f (n) (x 0 )h b +o(h n ) =f'(x 0 )h+ f (n) (x 0 )h n +o(h n )(h→0), ② 将②代入①后两边除以h n 令h→0,得
【答案解析】