f
(3)
(x
0
)(θh)
2
+…+
f
(n)
(x
0
)(θh)
n-1
+o(h
n-1
) =f'(x
0
)+
f
(n)
(x
0
)(θh)
n-1
+o(h
n-1
)(h→0), 代入原式得 (x
0
+h)-f(x
0
)=hf'(x
0
)+
f
(n)
(x
0
)θ
n-1
h
n
+o(h
n
) ① 再将f(x
0
+h)在x=x
0
展开成带皮亚诺余项的n阶泰勒公式 f(x
0
+h)-f(x
0
)=f'(x
0
)h+…+
f
(n)
(x
0
)h
b
+o(h
n
) =f'(x
0
)h+
f
(n)
(x
0
)h
n
+o(h
n
)(h→0), ② 将②代入①后两边除以h
n
得
令h→0,得
