设随机变量X与Y相互独立,且X~N(0,σ
1
2
),Y~N(0,σ
2
2
),则概率P{|X—Y|<1) ( )
A、
随σ
1
与σ
2
的减少而减少
B、
随σ
1
与σ
2
的增加而增加
C、
随σ
1
的增加而减少,随σ
2
的减少而增加
D、
随σ
1
的增加而增加,随σ
2
的减少而减少
【正确答案】
C
【答案解析】
解析:由X~N(0,σ
1
2
),Y~N(0,σ
2
2
)且独立知X—Y~N(0,σ
1
2
+σ
2
2
),从而
由于φ(x)是x的单调增加函数,因此当φ
1
增加时,
减少;当σ
2
减少时
提交答案
关闭