设某一设备由三大部件构成,设备运转时,各部件需调整的概率分别为0.1,0.2,0.3,若各部件的状态相互独立,求同时需调整的部件数X的分布函数.
【正确答案】
正确答案:X只取0,1,2,3各值,为计算概率P{X=i},i=0,1,2,3,设A
i
={第i个部件需要调整}.i=1,2,3.依题意,A
1
,A
2
,A
3
相互独立,且P(A
1
)=0.1,P(A
2
)=0.2,P(A
3
)=0.3. P{X=0}=
=0.9×0.8×0.7=0.504, P{X=3}=P(A
1
,A
2
,A
3
)= P(A
1
) P(A
2
) P(A
3
)=0.1×0.2×0.3=0.006, P{X=1}=
=0.1×0.8×0.7+0.9×0.2×0.7+0.9×0.8×0.3=0.398. P{X=2}=1一P{X=0}一P{X=1}一P{X=3}=0.092. 于是X的分布函数F(x)为 F(x)=P{X≤x}=
【答案解析】
解析:显然X是离散型随机变量,为求X的分布函数F(x),我们应首先求出X的分布律,即X的所有可能取值与相应概率.
提交答案
关闭