解答题 3.设f(x)在区间[2,4]上具有二阶连续导数f"(x),且f(3)=0,证明:存在一点ξ∈(2,4),使得
【正确答案】可知F(x)三阶连续可导,由二阶泰勒公式得

因为f"(x)在[ξ1,ξ2](2,4)上连续,所以f"(x)在[ξ1,ξ2]上有界,故存在实数m和M(m≤M),使得成立,所以由介值定理,存在ξ∈[ξ1,ξ2](2,4),使得于是有
【答案解析】