单选题
设y1(x),y2(x)为二阶常系数齐次线性方程y"+py'+qy=0的两个特解,则c1y1(x)+c2y2(x)(c1,c2为任意常数)是该方程通解的充分必要条件是
(A) y1(x)y'2(x)-y2(x)y'1(x)=0. (B) y1(x)y'2(x)-y2(x)y'1(x)≠0.
(C) y1(x)y'2(x)+y2(x)y'1(x)=0. (D) y1(x)y'2(x)+y2(x)y'1(x)≠0.
【正确答案】
B
【答案解析】[解析] 根据题设,y
1(x)与y
2(x)应线性无关,也就是说

(常数).反之若这个比值为常数,即y
1(x)=λy
2(x),则y
1(x)与y
2(x)线性相关.由y
1(x)=λy
2(x)可得:y'
1(x)=λy'
2(x),从而行列式
