【正确答案】
1、{{*HTML*}}正确答案:(2n一1)!!f
2n+1
(x)
【答案解析】解析:用归纳法.由f'(x)=f
3
(x)=1.f
3
(x)求导得 f"(x)=1.3f
2
(x)f'(x)=1.3f
5
(x),再求导又得 f"'(x)=1.3.5f
4
(x)f'(x)=1.3.5f
7
(x),由此可猜想 f
(n)
(x)=1.3…(2n一1)f
2n+1
(x)=(2n一1)!f
2n+1
(x)(n=1,2,3,…). 设n=k上述公式成立,则有 f
(k+1)
(x)=[f
(k)
(x)]'=[(2k一1)!!f
2k+1
(x)]' =(2k一1)!!(2k+1)f
2k
(x)f'(x)=(2k+1)!!f
2k+3
(x), 由上述讨论可知当n=1,2,3,…时 f
(n)
(x)=(2n一1)!!f
2n+1
(x)成立.