解答题
26.
设a
0
>0,
(n=0,1,2,…),证明:
【正确答案】
由
得a
n
≥1(n=1,2,3,…);
又由
得a
n
≤2(n=1,2,…),故数列{a
n
}有界;
又由a
n+1
一a
n
=
得a
n+1
—a
n
与a
n
一a
n-1
同号,即数列{a
n
}单调,故
存在.
令
两边取极限得
【答案解析】
提交答案
关闭