问答题 设x,y,z为实数,且ex+yx+|z|=3,求证:exy2|z|≤1.
【正确答案】因|z|=3-ex-y2,设f(x,y)=exy2|z|-exy2(3-ex-y2),且x,y满足ex+y2≤3.由于fx(x,y)=exy2(3-2ex-y2),fy(x,y)=2exy(3-ex-2y2),令fx=0,fy=0得驻点(0,±1)又因
   fxx(x,y)=exy2(3-4ex-y2), fxy(x,y)=2exy(3-2ex-2y2),
   fyy(x,y)=2ex(3-ex-6y2)且△(0,±1)=fxx(0,±1)fyy(0,±1)=fxy2(0,±1)=12>0,fxx(0,±1)=-2<0,所以(0,±1)是f(x,y)的极大值点,极大值为f(0,±1)=1.在边界ex+y2=3上,f(x,y)恒为零,因此,f(x,y)在闭区域ex+y2≤3上的最大值为1,即f(x,y)≤1,从而有exy2|z|≤1.
【答案解析】