【正确答案】[证明] 设切二次曲面于(x0,y0,z0)的切平面为
(x-x0)F1(x0,y0,z0)+F2(x0,y0,z0)(y-y0)+F3(x0,y,z) (z-z0)=0,而F1(x0,y0,z0)=x0+3z0,F2(x0,y0,z0)=2y0+2z0+1,F3(x0,y0,z0)=3x0+2y0-2,所以切平面方程为
(x0+3z0)x+(2y0+2z0+1) y+(3x0+2y0-2) z+F4(x0,y0,z0)=0,其中F4(x0,y0,z0)=y0-2z0+23.
当x0=3,y0=1,z0=-2时,切平面方程为
3x+y-9z-28=0.从而平面3x+y-9z-28=0与二次曲面相切,切点为(3,1,-2).
【答案解析】