问答题
问答题
设函数u(x),v(x)可导,利用导数定义证明[u(x)v(x)]"=u"(x)v(x)+u(x)v"(x);
【正确答案】
【答案解析】解:

问答题
设函数u
1
(x),u
2
(x),…,u
n
(x)可导,f(x)=u
1
(x)u
2
(x)…u
n
(x),写出f(x)的求导公式。
【正确答案】
【答案解析】解:由题意得
f"(x)={u
1
(x)[u
2
(x)…u
n
(x)]}"
=u
1
"(x)·[u
2
(x)…u
n
(x)]+u
1
(x)[u
2
(x)…u
n
(x)]"
=u
1
"(x)·u
2
(x)…u
n
(x)+u
1
(x){u
2
(x)·[u
3
(x)…u
n
(x)]}"
…
=u
1
"(x)·u
2
(x)…u
n
(x)+u
1
(x)·u
2
"(x)…u
n
(x)+…+u
1
(x)·u
2
(x)…u
n
"(x)。