问答题
问答题 设函数u(x),v(x)可导,利用导数定义证明[u(x)v(x)]"=u"(x)v(x)+u(x)v"(x);
【正确答案】
【答案解析】解:
问答题 设函数u 1 (x),u 2 (x),…,u n (x)可导,f(x)=u 1 (x)u 2 (x)…u n (x),写出f(x)的求导公式。
【正确答案】
【答案解析】解:由题意得
f"(x)={u 1 (x)[u 2 (x)…u n (x)]}"
=u 1 "(x)·[u 2 (x)…u n (x)]+u 1 (x)[u 2 (x)…u n (x)]"
=u 1 "(x)·u 2 (x)…u n (x)+u 1 (x){u 2 (x)·[u 3 (x)…u n (x)]}"

=u 1 "(x)·u 2 (x)…u n (x)+u 1 (x)·u 2 "(x)…u n (x)+…+u 1 (x)·u 2 (x)…u n "(x)。