问答题
设X,Y是随机变量.证明;D(X)=D(Y)的充要条件是X+Y与X-Y不相关.
【正确答案】由于
cov[X+Y,X-Y]
=E[(X+Y)(X-Y)]-E(X+Y)E(X-Y)
=E(X2-Y2)-[E(X)+E(Y)][E(X)-E(Y)]
=E(X2)-E(Y2)-[E(X)]2+[E(Y)]2
={E(X2)-[E(X)]2}-{E(Y)-[E(Y)]2}
=D(X)-D(Y).
若D(X)=D(Y),则cov[X+Y,X-Y]=0或ρ(X+Y,X -Y)=0,从而X+Y与X-Y不相关;反之,若X+Y与X-Y不相关,则ρ(X+Y,X-Y)=cov(X+Y,X-Y)=0,故D(X)=D(Y),可见命题成立.
【答案解析】