问答题
假设A为n阶可逆矩阵,证明:
问答题
(A
-1
)
T
=(A
T
)
-1
;
【正确答案】
【答案解析】[解] 因为A可逆,所以A
-1
存在.AA
-1
=E,(A
-1
)
T
A
T
=E.所以A
T
可逆且(A
T
)
-1
=(A
-1
)
T
.
问答题
(AT)
*
=(A
*
)
T
;
【正确答案】
【答案解析】A
*
=|A|A
-1
,(A
*
)
T
=(|A|A
-1
)
T
=|A|(A
-1
)
T
=|A
T
|(A
T
)
-1
=(A
T
)
*
.
问答题
(A
-1
)
*
=(A
*
)
-1
;
【正确答案】
【答案解析】证明:因为(AB)
*
=|AB|(AB)
-1
=|A||B| B
-1
A
-1
=B
*
A
*
①
AA
-1
=E.两边取“*”运算,所以由①得(AA
-1
)
*
=(A
-1
)
*
A
*
=E.
即证得(A
*
)
-1
=(A
-1
)
*
.
问答题
[(A
-1
)
T
]
*
=[(A
*
)
T
]
-1
.
【正确答案】
【答案解析】[(A
-1
)
T
]
*
=[(A
-1
)
*
]
T
=[(A
*
)
-1
]
T
=[(A
*
)
T
]
-1
.