问答题 假设A为n阶可逆矩阵,证明:
问答题 (A -1 ) T =(A T ) -1
【正确答案】
【答案解析】[解] 因为A可逆,所以A -1 存在.AA -1 =E,(A -1 ) T A T =E.所以A T 可逆且(A T ) -1 =(A -1 ) T
问答题 (AT) * =(A * ) T
【正确答案】
【答案解析】A * =|A|A -1 ,(A * ) T =(|A|A -1 ) T =|A|(A -1 ) T =|A T |(A T ) -1 =(A T ) *
问答题 (A -1 ) * =(A * ) -1
【正确答案】
【答案解析】证明:因为(AB) * =|AB|(AB) -1 =|A||B| B -1 A -1 =B * A *
AA -1 =E.两边取“*”运算,所以由①得(AA -1 ) * =(A -1 ) * A * =E.
即证得(A * ) -1 =(A -1 ) *
问答题 [(A -1 ) T ] * =[(A * ) T ] -1
【正确答案】
【答案解析】[(A -1 ) T ] * =[(A -1 ) * ] T =[(A * ) -1 ] T =[(A * ) T ] -1