填空题 设二维随机变量(X,Y)服从正态分布N(1,-2;σ 2 ,σ 2 ;0),则P{XY<2-2X+Y}= 1
【正确答案】
【答案解析】 [解析] (X,Y)~N(1,-2;σ 2 ,σ 2 ;0),所以X与Y相互独立,且X~N(1,σ 2 )和Y~N(-2,σ 2 ),也就有(X-1)~N(0 σ 2 )与(Y+2)~N(0,σ 2 ),且(X-1)与(Y+2)也相互独立
P{XY<2-2X+Y}=P{XY+2X-Y-2<0}=P{(X-1)(Y+2)<0}
=P{X-1<0,Y+2>0)+P{X-1>0,Y+2<0}
=P{X-1<0}P{Y+2>0}+P{X-1>0}P{Y+2<0}
根据正态分布的对称性:
P{X-1<0}=P{X-1>0)=P{Y+2>0}=P{Y+2<0}=
所以P{XY<2-2X+Y}=