问答题 设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f’(x)≥0,g’(x)≥0. 证明:对任意a∈[0,1],有∫ 0 a g(x)f’(x)dx+∫ 0 1 f(x)g’(x)dx≥f(a)g(1).
【正确答案】正确答案:令F(a)=∫ 0 a g(x)f'(x)dx+∫ 0 1 f(x)g’(x)dx一f(a)g(1),a∈[0,1],则 F’(a)=g(a)f'(a)-f'(a)g(1)=f'(a)[g(a)一g(1)]. 因为x∈[0,1]时,f'(x)≥0,g’(x)≥0,即函数f(x),g(x)在[0,1]上单调递增,又a≤1,所以 F’(a)=f'(a)[g(a)一g(1)]≤0, 即函数F(a)在[0,1]上单调递减,又 F(1)=∫ 0 1 g(x)f'(x)dx+∫ 0 1 f(x)g’(x)dx一f(1)g(1) =∫ 0 1 [g(x)f(x)]’dx一f(1)g(1)=g(1)f(1)一g(0)f(0)一f(1)g(1) =一f(0)g(0)=0, 所以F(a)≥F(1)=0,即 ∫ 0 a g(x)f'(x)dx+∫ 0 1 f(x)g’(x)dx一f(a)g(1)≥0, 即 ∫ 0 a g(x)f'(x)dx+∫ 0 1 f(x)g’(x)dx≥f(a)g(1).
【答案解析】