问答题
设A是三阶实对称矩阵,rA=1,A2
-3A=O,设(1,1,-1)T为A的非零特征值对应的特征向量.
问答题
求A的特征值.
【正确答案】
【答案解析】[解]

问答题
求矩阵A.
【正确答案】
【答案解析】设特征值0对应的特征向量为(x
1
,x
2
,x
3
)
T
,则x
1
+x
2
-x
3
=0,则0对应的特征向量为α
2
=(-1,1,0)
T
,α
3
=(1,0,1)
T
,令

对应的特征向量为
令λ
2
=λ
3
=2对应的另一个特征向量为

,由不同特征值对应的特征向量正交,得
