问答题 证明推广的积分中值定理:设F(x)与G(x)都是区间[a,b]上的连续函数,且G(x)≥0,G(x)≠0,则至少存在一点ξε[a,b]使得
【正确答案】正确答案:设F(x)在[a,b]上的最大值与最小值分别是M与m,利用G(x)≥0且G(x)≠0即知当xε[a,b]时,由定积分的性质即知,由于G(x)≥0且G(x)≠0,故,从而有。再由F(x)是以m与M分别为其最小值与最大值的区间[a,b]上的连续函数即知存在ξε[a,b]使得,即
【答案解析】