选择题
设b
n
>0(n=1,2,…),下述命题正确的是______
A.设
发散,
发散,则
必发散.
B.设
发散,
收敛,则
必发散.
C.设
收敛,
收敛,则
必收敛.
D.设
收敛,
发散,则
A、
无
B、
无
C、
无
【正确答案】
C
【答案解析】
证明C正确.首先证明:收敛存在. 事实上,左边级数前n项部分和Sn=(a1-a2)+(a2-a3)+…+(an-an+1)=a1-an+1. 收敛存在存在存在. 由存在, 根据比较判别法的极限形式知,级数收敛,从而知绝对收敛. A不正确,反例:发散,而 不存在,所以发散.满足A的题设条件,但是收敛的. B不正确,反例:发散,而存在,所以收敛,但是收敛的,故B不正确. D不正确,反例:收敛,发散,而也发散,故D不正确.
提交答案
关闭