问答题
设有三对角矩阵(a
ij
)n*n,将其三条对角线上的元素逐行地存于数组B(1:3n一2)中,使得B[k]=a
ij
,求:
问答题
用i、j表示七的下标变换公式;
【正确答案】正确答案:三对角矩阵第一行和最后一行各有两个非零元素,其余每行均有三个非零元素,所以共有3n一2个元素。(1)主对角线左下对角线上的元素下标间有i=j+1关系,k与i和j的关系为k=3(i-1);主对角线上元素下标间有关系i=j,k与i和j的关系为k=-3(i—1)+1;主对角线右上那条对角线上元素下标间有关系i=j一1,k与i和j的关系为k=3(i-1)+2。综合以上三等式,有k=2(i一1)+j (1≤i,j≤n,|i-j|≤1)。
【答案解析】
问答题
用k表示i,j的下标变化公式。【东北大学2002一(4分)】【北京工业大学2000二、1(9分)】【南京航空航天大学2000四】【山东科技大学2001一、6(6分)】【长沙铁道学院1997五、1(10分)】
【正确答案】正确答案:i=k/3+1;(1≤k≤3n一2) //k/3取小于k/3的最大整数。下同j=k-2(i一1)=k-2(k/3)=k%3+k/3
【答案解析】