【正确答案】mX(t)=E[X(t)]=E(Acos2t+Bsint+t)=cos2t+2sint+t
DX(t)=D[X(t)]=D(Acos2t+Bsint+t)=D(Acos2t)+D(Bsint)+2Cov(Acos2t,Bsint)=D(A)cos22t+D(B)sin2t+2cos2tsintCov(A,B)=3cos22t+4sin2t
RX(t1,t2)=E[X(t1)X(t2)]=E[(Acos2t1+Bsint1+t1)
(Acos2t2+Bsint2+t2)]=E(A2)cos2t1cos2t2+E(AB)cos2t1sint2+E(A)t2cos2t1+E(BA)sint1cos2t2+E(B2)sint1sint2+E(B)t2sint1+E(A)t1cos2t2+E(B)t1sint2+t1t2=4cos2t1cos2t2+2cos2t1sint2+t2cos2t1+2sint1cos2t2+8sint1sint2+2t2sint1+t1cos2t2+2t1sint2+t1t2CX(t1,t2)=RX(t1,t2)-mX(t1)mX(t2)=3cos2t1cos2t2+4cost1sint2
【答案解析】