问答题
已知对于n阶方阵A,存在自然数k,使得A
k
=0,试证明矩阵E-A可逆,并求出逆矩阵的表达式(E为n阶单位矩阵).
【正确答案】
由代数公式1-a
k
=(1-a)(1+a+…+a
k-1
)以及A与E可交换,有E-A
k
=(E-A)(E+A+…+A
k-1
),而A
k
=0,故有(E-A)(E+A+…+A
k-1
)=E,可知E-A可逆,且有(E-A)
-1
=E+A+…+A
k-1
.
【答案解析】
[考点] 单位矩阵、逆矩阵
提交答案
关闭