求函数z=e
xy
.sin(x+y)的全微分.
【正确答案】
正确答案:因z=e
xy
sin(x+y),于是 dz=d[e
xy
sin(x+y)]=d(e
xy
).sin(x+y)+ee
xy
d[sin(x+y)] =e
xy
.(ydx+xdy).sin(x+y)+e
xy
.cos(x+y)(dx+dy) =e
xy
{[ysin(x+y)+cos(x+y)]dx+[xsin(x+y)+cos(x+y)]dy}
【答案解析】
提交答案
关闭