求函数z=e xy .sin(x+y)的全微分.
【正确答案】正确答案:因z=e xy sin(x+y),于是 dz=d[e xy sin(x+y)]=d(e xy ).sin(x+y)+ee xy d[sin(x+y)] =e xy .(ydx+xdy).sin(x+y)+e xy .cos(x+y)(dx+dy) =e xy {[ysin(x+y)+cos(x+y)]dx+[xsin(x+y)+cos(x+y)]dy}
【答案解析】