单选题 设A是四阶方阵,A*是A的伴随矩阵,其特征值为1,-1,2,4,则下列矩阵中为可逆矩阵的是______.
A.A-E B.2A-E C.A+2E D.A-4E

【正确答案】 A
【答案解析】[解析] 利用矩阵行列式与其矩阵特征值的关系:|A|=λ1λ2…λn判别之,其中λi为A的特征值.
解一 设A*的特征值为,则
=1,=-1,=2,=4,
于是|A*|=1·(-1)·2·4=-8.
因而|A|4-1=|A*|,故|A|3=-8,即|A|=-2,所以A的特征值为