【正确答案】mY(t)=E(X(t)+φ(t))=mX(t)+φ(t)
DY(t)=E[(Y(t)-mY(t))2]=E[(X(t)+P(t)-mX(t)-φ(t))2]=DX(t)=CX(t,t)
φY2(t)=DY(t)+mY2(t)=CX(t,t)+mX2(t)+φ2(t)+2mX(t)φ(t)
RY(t1,t2)=E[Y(t1)Y(t2)]=E[(X(t1)+φ(t1))(X(t2)+φ(t2))]=E[X(t1)X(t2)+X(t1)φ(t2)+X(t2)φ(t1)+φ(t1)φ(t2)]=RX(t1,t2)+mX(t1)φ(t2)+mX(t2)φ(t1)+φ(t1)φ(t2)=CX(t1,t2)+[mX(t1)+φ(t1)][mX(t2)+φ(t2)]
CY(t1,t2)=RY(t1,t2)-mY(t1)mY(t2)=CX(t1,t2)
【答案解析】