则 EY=Eg(X)=∫
-∞
+∞
g(x)f(x)dx=∫
-∞
0
(一1)f(x)dx+∫
0
+∞
f(x)dx=
EY
2
=Eg
2
(X)=∫
-∞
+∞
g
2
(x)f(x)dx=∫
-∞
+∞
f(x)dx=1, 故 DY=EY
2
一(EY)
2
=1一0=1. 或者 EY=1×P{Y=1}+0×P{Y=0}+(一1)×P{Y=一1} =P{X>0}一P{X<0}=
又Y
2
=
所以 DY=EY
2
一(EY)
2
=EY
2
=P{X≠0}=P{X>0}+P{X<0}=1, Cov(X,Y)=EXY—EXEY=EXY=∫
-∞
+∞
xg(x)f(x)dx=
(Ⅱ)由于Y=
=g(X),故
又 Cov(X,Y)=EXY—EXEY,其中EX=0,
