解答题
10.
设函数f(x)在[0,2]上连续,在(0,2)内可导,且f(0)=1,f(1)=0,f(2)=3,证明至少存在一点ξ,使得f′(ξ)=0.
【正确答案】
因为f(x)在[0,2]上连续,且f(1)<f(0)<f(2),由介值定理,存在一点x
0
∈(1,2),使f(x)=f(0)=1,在[0,x
0
]上,由罗尔定理,至少存在一点ξ∈(0,x
0
)
【答案解析】
提交答案
关闭