解答题
17.
设α是一个n维非零实列向量.构造n阶实对称矩阵A,使得它的秩=1,并且α是A的特征向量,特征值为非零实数A.
【正确答案】
αα
T
是n阶实对称矩阵,秩为1,并且α是αα
T
的特征向量,特征值为α
T
α=(α,α).和题目要求只差在α的特征值上.于是记c=λ/(α,α),设A=cαα
T
,则A是n阶实对称矩阵,秩=1,并且
Aα=cαα
T
α=c(α,α)α=λα.
【答案解析】
提交答案
关闭