解答题 18.计算∫01dy∫y1x2ex2dx.
【正确答案】改变积分次序得
01dy∫y1x2ex2dx=∫01dx∫0xx2ex2dy=∫01x3ex2dx
=01x2ex2d(x2)=01xexdx=(x-1)ex01=
【答案解析】