解答题 16.设f(χ)在[a,b]上连续且单调减少.证明:当0<k<1时,∫0kf(χ)dχ≥k∫01f(χ)dχ.
【正确答案】0kf(χ)dχ-k∫01f(χ)dχ=∫0kf(χ)dχ-k[∫0kf(χ)dχ+∫k1f(χ)dχ]
=(1-k)∫0kf(χ)dχ-k∫k1f(χ)dχ=k(1-k)[f(ξ1)-f(ξ2)]
其中ξ1∈[0,k],ξ2∈[k,1].因为0<k<1且f(χ)单调减少,
所以∫0kf(χ)dχ-k∫01f(χ)dχ=k(1-k)[f(ξ1)-f(ξ2)]≥0,故∫0kf(χ)dχ≥k∫01f(χ)dχ.
【答案解析】