已选分类
理学数学
单选题设随机变量X~N(μ,σ2),σ>0,其分布函数F(x)的曲线的拐点为(a,b),则(a,b)为A.(μ,σ).B.(μ,).C.(μ,).D.(0,σ).
单选题已知随机变量(X,Y)在区域D={(x,y)|-1<x<1,-1<y<1}上服从均匀分布,则A.P{X+Y≥0}=.B.P{X-Y≥0}=.C.P{max(X,Y)≥0}=.D.P{min(X,Y)≥0}=.
单选题设A,B为两事件,则P(A-B)等于[ ] (A) P(A)-P(B); (B) P(A)-P(B)+P(AB); (C) P(A)-P(AB)); (D) P(A)+P(B)-P(AB).
单选题设总体X的概率密度是f(x),X1,X2,…,Xn为取自总体X的简单随机样本,则PX1=min(X1,X2,…,Xn)=
单选题设连续型随机变量X的分布函数为求使得达到最小的正整数n.
单选题设(X,Y)是二维随机变量,且随机变量X1=X+Y,X2=X-Y,已知(X1,X2)的概率密度函数为(Ⅰ)求X与Y的边缘概率密度;(Ⅱ)计算X与Y的相关系数ρXY.
单选题设离散型随机变量X仅取两个可能值x1和x2,而且x2>x1,X取值x1的概率为0.6,又已知E(X)=1.4,D(X)=0.24,则X的分布律为( ). (n为正整数,a、b为任意实数,a<b) A. X x1 x2 P 0.6 0.4 B. X 1 2 P 0.6 0.4 C. X n n+1 P 0.6 0.4 D. X a b P 0.6 0.4
单选题将3个球随机地放入4个盒子中,求盒子中球的最多个数分别为1,2,3的概率.
单选题设二维随机变量(X1,X2)的密度函数f1(X1,x2),则随机变量(X1,Y2)其中Y1=2X1,Y2=X2的概率密度f2(y1,y2)等于A..B..C..D..
单选题设A,B均n阶实对称矩阵,若A与B合同,则 A.A与B有相同的特征值. B.A与B有相同的秩. C.A与B有相同的特征向量. D.A与B有相同的行列式.
单选题设随机变量X服从参数为λ的泊松分布,已知PX>0=1-e-λ.求: (Ⅰ) PX≤1; (Ⅱ) X与X2的协方差.
单选题设随机变量X和Y都服从标准正态分布,则( ); A.X+Y服从正态分布 B.X2+Y2服从χ2分布 C.X2和Y2服从χ2分布 D.X2/Y2服从F分布
单选题设A是三阶矩阵,其特征值是1,3,-2,相应的特征向量依次为α1,α2,α3,若P=[α1,2α3,-α2],则p-1AP=A..B..C..D..
单选题某单位员工中有90%的人是购买基金的基民,80%的人是喜欢上网的网民,40%的人是购买股票的股民,则该单位既是股民又是网民的员工所占的比例至少是______;在网民中基民所占比例至少是______.
单选题设随机变量X1,X2,…,Xn(n>1)独立同分布,且其方差σ2>0,令,则A.B.cov(X1,Y)=σ2C.D.
单选题设随机变量X和Y均服从正态分布X~N(μ,4
2
),Y~N(μ,5
2
);记P
1
=P{X≤[μ-4},P
2
=P{Y≥μ+5},则
单选题设A为秩是r的m×n矩阵,非齐次线性方程组Ax=b有解的充分条件是 A.r=m. B.m=n. C.r=n. D.m<n.
单选题设二维连续型随机变量(X,Y)的联合概率密度为令随机变量U=-X,V=X+Y,,求:(Ⅰ)U的分布函数F1(u);(Ⅱ)V的分布函数F2(v);(Ⅲ)W的分布函数F3(w);(Ⅳ)U与W的联合分布函数F(u,w).
单选题设随机变量X与Y同分布,,并且|PXY=0=1.求(X,Y)的联合概率分布与X+Y的概率分布.
单选题袋中有2个白球,1个红球,甲从袋中任取一球,取后放回,乙再从袋中任取一球,则甲、乙两人取到的球颜色相同的概率为______A.B.C.D.
