问答题确定常数a与b的取值,使得
问答题
问答题设n阶方阵A、B可交换,即AB=BA,且A有n个互不相同的特征值.证明:(1)A的特征向量都是B的特征向量;(2)B相似于对角矩阵.
问答题求解下列二重积分:
问答题已知向量α
1
=(1,2,3,0)
T
,α
2
=(1,1,3,-s)
T
,α
3
=(3,5,8,-2)
T
,β=(3,3,t,-6)
T
.问:
(Ⅰ)s,t取何值时β不能由α
1
,α
2
,α
3
线性表示?
(Ⅱ)s,t取何值时β能由α
1
,α
2
,α
3
线性表示?并写出表示式.
问答题求二元函数(x>0,y>0)的极值.
问答题假设生产和销售某产品的收益R是产量的q二次函数。经统计得知:当产量q分别为0,2,4时,总收入R分别为0,6,8万元,试确定R与q之间的函数关系。
问答题
问答题
问答题
问答题已知A是3阶矩阵,α1,α2,α3是线性无关的3维列向量,满足Aα1=-α1-3α2-3α3,Aα2=4α1+4α2+α3,
Aα3=-2α1+3α3.
(Ⅰ)求矩阵A的特征值; (Ⅱ)求矩阵A的特征向量;
(Ⅲ)求矩阵A*-6E的秩.
问答题计算定积分
问答题
问答题
问答题
问答题
问答题
问答题计算不定积分.
问答题
问答题
