问答题过点M(3,0)作曲线y=ln(x-3)的切线,该切线与此曲线及x轴围成一平面图形D.试求平面图形D绕x轴旋转一周所得旋转体的体积.
问答题证明:当x≥0时,x≥arctan x。
问答题已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2-α3.如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解.
问答题设(Ⅰ)求矩阵A的特征值与特征向量;(Ⅱ)当时,求矩阵B;(Ⅲ)求A100.
问答题
问答题一枚5分硬币,连续抛掷3次,求“有1次国徽向上”的概率。
问答题设D由曲线xy=2,y=x+1,y=x-1围成,求二重积分.
问答题讨论函数在点x=2处的连续性与可导性.
问答题 Directions: Write a reply to this business letter. Office Supplies Company ABC Engineering Company, 222 Nathan Road 77 An Nei Jie, Wuhan Kowloon, Hong Kong 17th JanuaryDear Sir/Madam, I saw your advertisement in China Daily for your new fax machines. Would you please send me more information and a price list. I would also appreciate a visit to one of from sales people in the near future to discuss our requirements for business machines. Thank you. Yours sincerely, Li Wei You should write about 100 words on ANSWER SHEET 2. Do not sign your own name at the end of the letter. Use "Li Ming" instead.
问答题设y=y(x)是一向上凸的连续曲线,其上任意一点(x,y)处的曲率为,又此曲线上的点(0,1)的切线方程为y=x+1,求该曲线方程,并求函数y(x)的极值.
问答题设直线y=ax与抛物线y=x
2
所围成的图形面积为S
1
,它们与直线x=1所围成的图形面积为S
2
,且a<1.
问答题设f(x)在[a,b]上连续,在(a,b)内可导(a>0),且f(a)=0.证明:存在ξ∈(a,b),使得
问答题求由曲线y=2-x2,y=2x-1及x≥0围成的平面图形的面积S以及此平面图形绕x轴旋转一周所得旋转体的体积Vx.
问答题设X~N(0,1),Y=X
2
,求Y的概率密度函数.
问答题设,证明:{an}收敛,并求
问答题已知下列非齐次线性方程组
问答题计算其中∑为圆柱面x2+y2=1及平面z=x+2,z=0所围立体的表面.
问答题证明:
问答题计算∫tanxdx.
问答题设相似于对角阵.求:
