语言类
公务员类
工程类
语言类
金融会计类
计算机类
医学类
研究生类
专业技术资格
职业技能资格
学历类
党建思政类
英语证书考试
大学英语考试
全国英语等级考试(PETS)
英语证书考试
英语翻译资格考试
全国职称英语等级考试
青少年及成人英语考试
小语种考试
汉语考试
填空题disaster emergency
进入题库练习
填空题People were encouraged to view the language with less prejudice.
进入题库练习
填空题Ivan Luckin is also the vendor of London Bridge.
进入题库练习
填空题What is the lost property number given to the man?
进入题库练习
填空题What Are You Laughing at? A We like to think that laughing is the height of human sophistication. Our big brains let us see the humour in a strategically positioned pun, an unexpected plot twist or a clever piece of word play. But while joking and wit are uniquely human inventions, laughter certainly is not. Other creatures, including chimpanzees, gorillas and even rats, chuckle. Obviously, they don't crack up at Homer Simpson or titter at the boss's dreadful jokes, but the fact that they laugh in the first place suggests that sniggers and chortles have been around for a lot longer than we have. It points the way to the origins of laughter, suggesting a much more practical purpose than you might think. B There is no doubt that laughing typical involves groups of people. 'Laughter evolved as a signal to others—it almost disappears when we are alone,' says Robert Provine, a neuroscientist at the University of Maryland. Provine found that most laughter comes as a polite reaction to everyday remarks such as 'see you later', rather than anything particularly funny. And the way we laugh depends on the company we're keeping. Men tend to laugh longer and harder when they are with other men, perhaps as a way of bonding. Women tend to laugh more and at a higher pitch when men are present, possibly indicating flirtation or even submission. C To find the origins of laughter, Provine believes we need to look at play. He points out that the masters of laughing are children, and nowhere is their talent more obvious than in the boisterous antics, and the original context is play. Well-known primate watchers, including Dian Fossey and Jane Goodall, have long argued that chimps laugh while at play. The sound they produce is known as a pant laugh. It seems obvious when you watch their behaviour—they even have the same ticklish spots as we do. But remove the context, and the parallel between human laughter and a chimp's characteristic pant laugh is not so clear. When Provine played a tape of the pant laughs to 119 of his students, for example, only two guessed correctly what it was. D These findings underline how chimp and human laughter vary. When we laugh, the sound is usually produced by chopping up a single exhalation into a series of shorter with one sound produced on each inward and outward breath. The question is: does this pant laughter have the same source as our own laughter? New research lends weight to the idea that it does. The findings come from Elke Zimmerman, head of the Institute for Zoology in Germany, who compared the sounds made by babies and chimpanzees in response to tickling during the first year of their life. Using sound spectrographs to reveal the pitch and intensity of vocalisations, she discovered that chimp and human baby laughter follow broadly the same pattern. Zimmerman laughter was around long before humans arrived on the scene. What started simply as a modification of breathing associated with enjoyable and playful interactions has acquired a symbolic meaning as an indicator of pleasure. E Pinpointing when laughter developed is another matter. Humans and chimps share a common ancestor that lived perhaps eight million years ago but animals might have been laughing long before that. More distantly related primates, including gorillas, laugh, and anecdotal evidence suggests that other social mammals may do too. Scientists are currently testing such stories with a comparative analysis of just how common laughter is among animals. So far, though, the most compelling evidence for laughter beyond primates comes from research done by JaakPanksepp from Bowling Green State University, Ohio, into the ultrasonic chirps produced by rats during play and in response to tickling. F All this still doesn't answer the question of why we laugh at all. One idea is that laughter and tickling originated as a way of sealing the relationship between mother and child. Another is that the reflex response to tickling is protective, alerting us to the presence of crawling creatures that might harm us or compelling us to defend the parts of our bodies that are most vulnerable in hand-to-hand combat. But the idea that has gained most popularity in recent years is that laughter in response to tickling is a way for two individuals to signal and test their trust in one another. This hypothesis starts from the individuals to signal and test their trust in one another. This hypothesis starts from the observation that although a little tickle can be enjoyable, if it goes on too long it can be torture. By engaging in a bout of tickling, we put ourselves at the mercy of another individual, and laughing is a signal of trust according to Tom Flamson, a laughter researcher at the University of California, Los Angeles. 'Even in rats, laughter, tickle, play and trust are linked. Rats chirp a lot when they play,' says Flamson. 'These chirps can be aroused by tickling. And they get bonded to us as a result, which certainly seems like a show of trust.' G We'll never know which animal laughed the first laugh, or why. But we can be sure it wasn't in response to a prehistoric joke. The funny thing is that while the origins of laughter are probably quiet serious, we woe human laughter and our language-based humour to the same unique skill. While other animals pant, we alone can control our breath well enough to produce the sound of laughter. Without that control there would also be no speech—and no jokes to endure. —New Scientist
进入题库练习
填空题Fallone is now studying the sleep patterns of children with ______.
进入题库练习
填空题Questions17-20Completetheflowchartbelowusinginformationfromthetext.UseNOMORETHANTHREEWORDSforeachanswer.Writeyouranswersinboxes17-20onyourAnswerSheet.
进入题库练习
填空题If the topic needs to be changed, you should send a __________ in advance.
进入题库练习
填空题What will Martina lose?
进入题库练习
填空题How is the man’s appetite these days?________
进入题库练习
填空题Listen to the conversation and complete the notes below. Use up to three words.
进入题库练习
填空题emergency price controls
进入题库练习
填空题Supermarkets in Britain sell a limited range of products.
进入题库练习
填空题Two of the objects carried by poachers.
进入题库练习
填空题The Development of Plastics A When rubber was first commercially produced in Europe during the nineteenth century, it rapidly became a very important commodity, particularly in the fields of transportation and electricity. However, during the twentieth century a number of new synthetic materials, called plastics, superseded natural rubber in all but a few applications. B Rubber is a polymer—a compound containing large molecules that are formed by the bonding of many smaller, simpler units, repeated over and over again. The same bonding principle—polymerization—underlies the creation of a huge range of plastics by the chemical industry. C The first plastic was developed as a result of a competition in the USA. In the 1860s $10,000 was offered to anybody who could replace ivory—supplies of which were declining—with something equally good as a material for making billiard balls. The prize was won by John Wesley Hyatt with a material called celluloid. Celluloid was made by dissolving cellulose, a carbohydrate derived from plants, in a solution of camphor dissolved in ethanol. This new material rapidly found uses in the manufacture of products such as knife handles, detachable collars and cuffs, spectacle frames and photographic film. Without celluloid, the film industry could never have got off the ground at the end of the 19th century. D Celluloid can be repeatedly softened and reshaped by heat, and is known as a thermoplastic. In 1907, Leo Baekeland, a Belgian chemist working in the USA, invented a different kind of plastic, by causing phenol and formaldehyde to react together. Baekeland called the material Bakelite, and it was the first of the thermosets—plastics that can be cast and moulded while hot, but cannot be softened by heat and reshaped once they have set. Bakelite was a good insulator, and was resistant to water, acids and moderate heat. With these properties it was soon being used in the manufacture of switches, household items such as knife handles, and electrical components for cars. E Soon chemists began looking for other small molecules that could be strung together to make polymers. In the 1930s British chemists discovered that the gas ethylene would polymerize under heat and pressure to form a thermoplastic they called polythene. Polypropylene followed in the 1950s. Both were used to make bottles, pipes and plastic bags. A small change in the starting material—replacing a hydrogen atom in ethylene with a chlorine atom—produced PVC (polyvinyl chloride), a hard, fireproof plastic suitable for drains and gutters. And by adding certain chemicals, a soft form of PVC could be produced, suitable as a substitute for rubber in items such as waterproof clothing. A closely related plastic was Teflon, or PTFE (polytetrafluoroethylene). This had a very low coefficient of friction, making it ideal for bearings, rollers, and non-stick frying pans. Polystyrene, developed during the 1930s in Germany, was a clear, glass-like material, used in food containers, domestic appliances and toys. Expanded polystyrene—a white, rigid foam—was widely used in packaging and insulation. Polyurethanes, also developed in Germany, found uses as adhesives, coatings, and—in the form of rigid foams—as insulation materials. They are all produced from chemicals derived from crude oil, which contains exactly the same elements—carbon and hydrogen—as many plastics. F The first of the man-made fibres, nylon, was also created in the 1930s. Its inventor was a chemist called Wallace Carothers, who worked for the Du Pont company in the USA. He found that under the right conditions, two chemicals—hexamethylenediamine and adipic acid—would form a polymer that could be pumped out through holes and then stretched to form long glossy threads that could be woven like silk. Its first use was to make parachutes for the US armed forces in World War Ⅱ. In the post-war years nylon completely replaced silk in the manufacture of stockings. Subsequently many other synthetic fibres joined nylon, including Orion, Acrilan and Terylene. Today most garments are made of a blend of natural fibres, such as cotton and wool, and man-made fibres that make fabrics easier to look after. G The great strength of plastic is its indestructibility. However, this quality is also something of a drawback: beaches all over the world, even on the remotest islands, are littered with plastic bottles that nothing can destroy. Nor is it very easy to recycle plastics, as different types of plastic are often used in the same items and call for different treatments. Plastics can be made biodegradable by incorporating into their structure a material such as starch, which is attacked by bacteria and causes the plastic to fall apart. Other materials can be incorporated that gradually decay in sunlight—although bottles made of such materials have to be stored in the dark, to ensure that they do not disintegrate before they have been used. Do the following statements agree with the information given in Reading Passage 1? In boxes 1-7 on your answer sheet, write TRUE if the statement agrees; FALSE if the statement disagrees; NOT GIVEN if there is no information on this.
进入题库练习
填空题Shops are becoming more ______ about stocking healthy food and drink products.
进入题库练习
填空题When using books, what should the student definitely write down, apart from the title?
进入题库练习
填空题Some companies have made their dark chocolate less ______.
进入题库练习
填空题The article suggests that ______ allow economic invasive species to do what they want and eventually lead to monopolies.
进入题库练习
填空题最后填能够获得什么?
进入题库练习