解答题[2017年] 已知函数y(x)由方程x3+y3-3x+3y一2=0确定,求y(x)的极值.
解答题A=,求a,b及可逆矩阵P,使得P-1AP=B.
解答题(1)设f(x)连续,证明∫0πxf(sinx)dx=∫0πf(sinx)dx;(2)证明
解答题设f(x)连续,且g(x)=∫0xx2f(x—t)df,求g’(x).
解答题18.
解答题将函数f(x)=x-1(0≤x≤2)展开成周期为4的余弦级数.
解答题16.
解答题设f(x)在[a,b]上连续,在(a,b)内二阶连续可导.证明:存在ξ∈(a,b),使得
解答题设f(x)在[a,+∞]上可导,且当x>a时,f'(x)<k<0(k为常数).证明
解答题设f(x)连续,且f’(0)存在,求f’(0).
解答题17.
解答题计算定积分.
解答题(14年)设随机变量X的概率分布为P{X=1}=P{X=2}=.在给定X=i的条件下
解答题设对一切x,有f(x+1)=2f(x),且当x∈[0,1]时f(x)=x(x2一1)
解答题求数项级数的和.
解答题23.
解答题设随机变量X,Y相互独立且都服从标准正态分布,令U=X2+Y2.求: (1)fU(u);
解答题21.
解答题计算三重积分,其中Q是由曲线绕z轴旋转一周而成的曲面与平面z=4所围成的立体.
解答题设f(x)∈C[a,b],在(a,b)内可导,f(a)=f(b)=1.证明:存在ξ,η∈(a,b)
