问答题设p(x)在[a,b]上非负连续,f(x)与g(x)在[a,b]上连续且有相同的单调性,其中D={(x,y)|a≤x≤b,a≤y≤b),比较的大小,并说明理由.
问答题计算
问答题求y'
2
-yy''=1的通解.
问答题设F(x,y,z)有连续偏导数,求曲面S:点(x0,y0,z0)处的切平面方程,并证明切平面过定点.
问答题计算定积分
问答题求下列极限:
问答题(1)设连续型随机变量X的r阶绝对矩E(|X|r),r>0存在,证明对任何ε>0,有(2)设X1,X2,…,Xn为来自正态总体X~N(μ,σ2)的一个简单随机样本.已知an>0,且是σ2的一致估计.
问答题设A,B为随机事件,且P(A)=,P(B|A)=,P(A|B)=,令求(Ⅰ)二维随机变量(X,Y)的概率分布;(Ⅱ)X与Y的相关系数ρ(X,Y).
问答题设总体X具有概率密度:f(χ)=从此总体中抽得简单样本X1,X2,X3,X4,求T=Xi的密度.
问答题设b>a>e,证明:a
b
>b
a
.
问答题已知二次曲面方程x2+ay2+z2+2bxy+2xz+2yz=4可以经过正交变换化为椭圆柱面方程η2+4ξ2=4,求a,b的值和正交矩阵P.
问答题求
问答题设4阶矩阵A=(α
1
,α
2
,α
3
,α
4
),方程组Ax=β的通解为(1,2,2,1)
T
+c(1,一2,4,0)
T
,c任意.
记B=(α
3
,α
2
,α
1
,β-α
4
).求方程组Bx=α
1
一α
2
的通解.
问答题判别级数的敛散性.
问答题一生产线生产的产品成箱包装,每箱的重量是随机的,假设每箱平均重量50千克,标准差为5千克,若用最大载重为5吨的汽车承运,试用中心极限定理说明每辆车最多可装多少箱,才能保证不超载的概率大于0.977(φ(2)=0.977).
问答题设xOy平面第一象限中有曲线Γ:y=y(x),过点A(0,一1),y(x)0.又M(x,y)为Γ上任意一点,满足:弧段的长度与点M处Γ的切线在x轴上的截距之差为一1.
问答题讨论函数f(x)=在x=0处的连续性与可导性.
问答题计算曲线积分I=,其中L是从点A(一a,0)经上半椭圆=1(y≥0)到点B(a,0)的弧段.
问答题计算∫
L
xdy一(2y+1)dx,其中
问答题设f(x)=∫0xdt,求f'(x).