设总体X的概率密度为其中θ>0是未知参数,从总体X中抽取简单随机样本X1,X2,…,Xn,记=min(X1,X2,…,Xn).
设随机变量X的密度函数为φ(x),且φ(-x)=φ(x),F(x)为X的分布函数,则对任意实数a,有( )
设一部机器一天内发生故障的概率为1/5,机器发生故障时全天停止工作.若一周5个工作日无故障,则可获利10万元;发生一次故障获利5万元;发生两次故障获利0元;发生三次及以上的故障亏损2万元,求一周内利润的期望值.
设一设备开机后无故障工作时间X服从指数分布,平均无故障工作时间为5小时,设备定时开机,出现故障自动关机,而存无故瞳下工作2小时便自动关机,求该设备每次开机无故障工作时间Y的分布.
假设随机变量X1,…,Xn相互独立,服从同参数λ的泊松分布.记Sn=Xi+n,当n充分大时,求Sn的近似分布.
设事件A,B独立.证明:事件A,都是独立的事件组.
设随机变量X和Y的概率分布分别为P(X2=Y2)=1(Ⅰ)求二维随机变量(X,Y)的概率分布;(Ⅱ)求Z=XY的概率分布;(Ⅲ)求x与y的相关系数ρXY.
设总体X的概率密度为又设X1,X2,…,Xn是来自X的一个简单随机样本,求未知参数θ的矩估计量
设随机变量X,Y相互独立,且X~N(0,1),Y~N(1,1),则().
设X是连续型随机变量,且已知lnX服从正态分布N(μ,σ
2
),求X与X
2
的期望.
设某个系统由六个相同的元件先经过两两串联再并联而成,且各元件工作状态相互独立,每个元件正常工作时间服从E(λ)(λ>0)分布,求系统正常工作时间T的概率分布.
设Y=lnX~N(μ,σ
2
),而X
1
,…,X
n
为取自总体的X的简单样本,试求EX的最大似然估计.
设X~U(0,1)且X与Y独立同分布,求ξ=的分布函数(U(0,1)表示区间(0,1)上的均匀分布)F(u).
已知(X,Y)在以点(0,0),(1,一1),(1,1)为顶点的三角形区域上服从均匀分布.(Ⅰ)求(X,Y)的联合密度函数f(x,y);(Ⅱ)求边缘密度函数fX(x),FY(y)及条件密度函数fX|Y(x|y),fY|X(y|x);并问X与Y是否独立;(Ⅲ)计算概率P{X>0,Y>0},
设总体X~N(0,σ2),参数σ>0未知,X1,X2,…,Xn是取自总体X的简单随机样本(n>1),令估计量
若A,B为任意两个随机事件,则( )
一批产品有10个正品2个次品,任意抽取两次,每次取一个,抽取后不放同,求第二次抽取次品的概率.
设随机向量(X,Y)服从二维正态分布,其边缘分布为X~N(1,1),Y~N(2,4),X与Y的相关系数为ρxy=且概率P{aX+bY≤1}=,则()
设从均值为μ,方差为σ2>0的总体中分别抽取容量为n1,n2的两个独立样本,样本均值分别为.证明:对于任何满足条件a+b=1的常数是μ的无偏估计量,并确定常数a,b,使得方差DT达到最小.
一个罐子里装有黑球和白球,黑、白球数之比为R:1,现有放回地一个接一个地抽球,直到抽到黑球为止,记X为所抽的白球数,这样做了n次以后,我们获得一组样本:X
1
,X
2
,…,X
n
。基于此,求R的最大似然估计.
